- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Spek, A. L. (1993). PLUTON93. Program for the Display and Analysis of Crystal and Molecular Structures. Univ. of Utrecht, The Netherlands.
- Stoe & Cie (1988). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 1049-1050

Phosphorus Pentoxide at 233 K

DÖRTE STACHEL

Otto-Schott-Institut, Chemische Fakultät, Friedrich-Schiller-Universität Jena, Fraunhoferstrasse 6, D-07743 Jena, Germany

INGRID SVOBODA AND HARTMUT FUESS

Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany

(Received 14 March 1994; accepted 26 October 1994)

Abstract

The structure of the thermodynamically most stable form of phosphorus pentoxide, $o'-(P_2O_5)_{\infty}$, consists of infinite layers built from six-membered rings of threecorner linked PO₄⁻ tetrahedra, as described in 1964 by Cruickshank [Acta Cryst. (1964), **17**, 679–680]. The P— O bond distances and P—O—P bond angles reported here differ from Cruickshank's values and show a better agreement with the average ranges of known crystalline phosphate structures.

Comment

The o'-(P₂O₅) $_{\infty}$ single crystals were prepared from the melt in a tightly covered gold crucible at 635 K over two to three weeks in an electrically heated furnace. The needle-like crystals were extracted from the glassy melt by means of acetone at room temperature over several days. X-ray measurements on the single crystal were performed at 233 (2) K and without any contact with air or water vapour (by immersion of the crystal in paraffin within a glass capillary).

The average bond lengths are 1.570(4) Å for P— O linked bonds and 1.440(10) Å for unlinked double bonds.

Fig. 1. The structure of a sheet of $o' - (P_2O_5)_{\infty}$.

Fig. 2. The stacking of the sheets in P_2O_5 .

Experimental

Crystal data P_2O_5 $M_r = 141.94$ Orthorhombic *Pnma* a = 9.193 (9) Å b = 4.890 (4) Å c = 7.162 (7) Å $V = 322.0 (5) Å^3$ Z = 4 $D_r = 2.928 Mg m^{-3}$

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 3.60-16.89^{\circ}$ $\mu = 1.081$ mm⁻¹ T = 233 (2) K Needle $0.18 \times 0.08 \times 0.05$ mm Colourless

Acta Crystallographica Section C ISSN 0108-2701 ©1995 1050

Data collection Enraf-Nonius CAD-4 diffractometer $\omega/2\omega$ scans Absorption correction: empirical $T_{min} = 0.874$, $T_{max} =$ 0.997 1419 measured reflections 776 independent reflections 532 observed reflections $[I > 2\sigma(I)]$

```
Refinement
```

-	
Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.039$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.083$	1993)
S = 1.117	Extinction coefficient:
776 reflections	0.0004 (44)
41 parameters	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2]$	from International Tables
where $P = (F_o^2 + 2F_c^2)/3$	for Crystallography (1992,
$(\Delta/\sigma)_{\rm max} < 0.001$	Vol. C, Tables 4.2.6.8 and
$\Delta \rho_{\rm max} = 0.799 \ {\rm e} \ {\rm \AA}^{-3}$	6.1.1.4)
$\Delta \rho_{\rm min} = -0.691 \text{ e } \text{\AA}^{-3}$	

 $R_{\rm int}=0.0729$

 $\theta_{\rm max} = 34.94^{\circ}$

 $h = 0 \rightarrow 14$

 $\begin{array}{l} k = -7 \rightarrow 7 \\ l = 0 \rightarrow 11 \end{array}$

3 standard reflections

frequency: 120 min intensity decay: 2.0%

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
	x	у	z	U_{eq}	
P1	0.40207 (10)	1/4	0.34571 (13)	0.0055 (2)	
P2	0.24238 (10)	1/4	0.70848 (13)	0.0061 (2)	
01	0.2762 (3)	1/4	0.4930 (3)	0.0085 (5)	
02	0.5517 (3)	1/4	0.4104 (4)	0.0095 (5)	
03	0.3612 (3)	1/4	0.8389 (4)	0.0105 (5)	
04	0.3642 (2)	0.0014 (3)	0.2162 (2)	0.0076 (3)	

Table 2. Selected geometric parameters (Å, °)

	-	-			
P1	1.452 (3)	P2-03	1.437 (3)		
P1-01	1.566 (3)	P2—04 ⁱⁱ	1.573 (2)		
P104	1.568 (2)	P2—04 ^m	1.573 (2)		
P1—O4 ¹	1.568 (2)	P201	1.574 (3)		
O2P1O1	119.0 (2)	O3—P2—O4 ⁱⁱ	116.77 (10)		
02—P1—04	113.53 (9)	O3P2O4 ⁱⁱⁱ	116.77 (10)		
01—P1—04	103.54 (10)	O3-P2-O1	119.1 (2)		
O2—P1—O4 ⁱ	113.53 (9)	04 ⁱⁱ —P2—01	99.07 (9)		
01—P1—O4 ⁱ	103.54 (10)	04 ⁱⁱⁱ P201	99.07 (9)		
04—P1—04 ⁱ	101.66 (15)	P1-01-P2	143.7 (2)		
Symmetry codes: (i) $x, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} - x, -y, \frac{1}{2} + z$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z$.					

Data collection: *SDP-Plus* (Frenz, 1985). Cell refinement: *SDP-Plus*. Data reduction: *REDU*4 (Stoe & Cie, 1988). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1985). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993). Molecular graphics: *PLUTON*93 (Spek, 1993). Software used to prepare material for publication: *SHELXL*93.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1085). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cruickshank, D. W. J. (1964). Acta Cryst. 17, 679-680.

- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Spek, A. L. (1993). PLUTON93. Program for the Display and Analysis of Crystal and Molecular Structures. Univ. of Utrecht, Netherlands.
- Stoe & Cie (1988). *REDU4. Data Reduction Program.* Version 6.2. Stoe & Cie, Darmstadt, Germany.